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A resonator is described which generates directly a Bessel Gauss beam as output.  The 
resonator consists of an axicon mirror and a flat output coupler.  Numerical simulation 
based on Fox-Li iteration in the cavity confirms the geometric-optic arguments to 
determine the resonance condition. 
 

Introduction 
 
It is known that an axicon transforms an incoming plane wave into a Bessel beam [1].  
In Figure 1a a plane wave is incident from the left on the base plane AB of such an 
axicon.  This axicon is assumed be thin.  In the subsequent paragraphs the paraxial 
approximation is adopted.  The plane wave is transformed into a conical wave, 
exhibiting an interference zone CFDE.  In this zone the Bessel beam exists.  If a mirror 
would be installed now in the plane CD, then the Bessel beam is reflected upon itself.  
This observation leads to the realization of the Bessel beam using a resonator. 
 
 

 

 

 

 

 

 

 

Figure 1: a) Transformation of a plane wave in a conical wave by transmission through an axicon. 
 b) Resonator generating a Bessel beam. 

 
In Figure 1b the base plane AB of the axicon is made highly reflective, whereas the 
output coupler CD is partially reflective.  The field is self-reproducing in two 
roundtrips.  The resonance condition is 
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n being the refractive index of the axicon,  γ its apex angle and  L = EF/2.  This 
expression is based on the formula expressing the angular deviation for a ray 
perpendicularly incident on a wedge with apex angle γ (see Figure 1a): 
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−≅−= , see ref. 2.  Also observe that AB = 2 x CD, i.e. that the 

interference interval of the conical wave on the plane mirror is half the size of the base 
of the axicon.  The transverse dimension r of the axicon makes explicitly part of this 
self-consistency condition.  In the usual case of resonators supporting Gaussian beams, 
the condition that rays reproduce themselves is independent of the mirror size, at least in 
the geometric optical limit. 
In Figure 1, the transmissive axicon with the totally reflecting base can be replaced by a 
reflective axicon, leading to an alternative but equivalent realization of a Bessel 
resonator. 
The fundamental Bessel wave is described by 
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We now note that the triangle AEF in Figure 1a is similar to the triangle spanned by the 
wave vectors βα ,  and k leading to 
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giving the relation between the resonator parameters and the spatial frequency α of the 
Bessel function: 
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If the resonance condition (1) is substituted in equation (4), the expression for the spatial 
frequency α becomes: 
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which is now independent of  L  and  r.  This means that the spatial behaviour of the 
mode in the plane of the flat mirror is not dependent on the diameter of the axicon, only 
on its apex angle.  This fact leads to a new class of equivalent resonators.  All resonators 
having equal apex angles of their axicon mirror (and different resonators lenghts) have 
an identical shape of Bessel mode on their flat output coupler.  For our particular set of 
experimental parameters eq (5) results in   α = 7.2197 mm –1 . 



Numerical simulation 
 
The reference plan to start the round trip in the resonator is chosen just before the output 
coupler plane CD of Figure 1b.  Since it is the intention to validate the calculations on a 
CO2 laser resonator, the following numerical values were fixed as follows:   
  λ = 10.6 micron 
  n = 2.4  ( Zinc Selenide ) 
  γ = 0.5 °  =  8.7 mrad 
  r = .75 “ / 2  =  9.53 mm 
 
resulting in a cavity length L = 391.2 mm according to the resonance condition (1). 
γ and r  of the Zinc Selenide axicon correspond to a commercially available model, 
AR/AR coated for 10.6 micron. 
The classical Fox-Li iteration algorithm was implemented to determine numerically the 
lowest loss mode of the resonator.  The mode is sampled in the reference plane over a 
grid of 512x512 points.  Upon transmission through the axicon, reflection at its rear side 
and subsequent second transmission through the axicon, a phase shift  
exp [ -2 i k (n – 1) γ r ] is added to the wave.  Typically 100 round-trips are required for 
the process to converge, starting from an arbitrary rotationally symmetric field 
distribution.  The convergence is shown in Figure 2. 

 

 

 
 
The intensity distribution is shown in Figure 3, where its shape is also compared to the 
ideal Bessel solution, equation (2) , with α given by equation (5).  It can be observed 
that the real beam falls off faster than the Bessel beam, becoming virtually zero outside 
the interval [- r/2, r/2]. 
In Figure (4) the phase distribution along the x-axis is represented. If the beam would be 
an ideal Bessel beam, then the phase pattern would have been a block wave with phase 
jumps of π at the zeros of the Bessel function. Due to aperture diffraction however, 
phase distortion towards the edges of the plane mirror can be observed.  
This is similar to the behaviour of the Bessel-Gauss resonator of ref. 3. 
 

Figure 2: Normalized amplitude at the origin, as a 
function of the number of round-trips. 

Figure 3: Comparison between theoretical and 
numerical solution. Normalized intensity along 
the x-axis. Full line: iterative solution; dots: 
Bessel function. 



Finally, the (two-dimensional) Fourier Transform of the field at the flat mirror was 
calculated.  Since the mode exhibits circular symmetry, so will also its Fourier 
Transform.  In case of a pure Bessel mode, its transform is a Dirac delta function ring 
with radius α in the Fourier domain [4].  Fig. 5 shows the result for our numerical 
simulation.  Due to aperture effects  the radial part of the spatial frequency distribution is 
not an infinitely sharp spike.  It is further evidence however that the resonator generates 
a quite good approximation of a Bessel mode, in fact it should be rather denominated a 
Bessel-Gauss mode, since if the Bessel function is numerically extracted from the 
intensity distribution by dividing by J0� � ��� D� *DXVVLDQ- like function is effectively 
obtained. 
 

 

Figure 4: Phase along x-axis, 
where x is in units of r. 

Figure 5: Radial part of spatial 
frequency distribution, where kx 
is in units of . 
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